
VCA Task Script Language
Version 1.8

en Script language

VCA Task Script Language Table of Contents | en 3

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

Table of Contents

1 Change log 5
1.1 Version 1.0 5
1.2 Upgrade to version 1.1 5
1.3 Upgrade to version 1.2 5
1.4 Upgrade to version 1.3 5
1.5 Upgrade to version 1.4 5
1.6 Upgrade to version 1.5 5
1.7 Upgrade to version 1.6 5
1.8 Upgrade to version 1.7 5
1.9 Upgrade to version 1.8 6

2 Definitions 7
2.1 Events and states 7
2.2 Properties 7
2.3 Rules 7
2.4 Alarm Task engine 7

3 System integration 8
3.1 System overview 8
3.2 User-defined tasks 9

4 Syntax 10
4.1 Types 10
4.1.1 Basic types 10
4.1.2 Attributes 10
4.2 Comments 11
4.3 Script normalization 11
4.4 Primitives 12
4.4.1 Field 12
4.4.2 Line 14
4.4.3 Route 15
4.4.4 Loitering 16
4.4.5 ColorHistogram 17
4.4.6 FlowDetector 18
4.4.7 CrowdDensityEstimator 20
4.4.8 MotionDetector 21
4.5 Object-specific events 22
4.5.1 Object events 22
4.6 Counter 22
4.7 Object properties 23
4.7.1 States 25
4.8 Tamper states 26
4.9 User-defined states 27
4.9.1 SimpleState 27
4.9.2 Boolean composition of conditions 27
4.9.3 Properties in conditions 28

4 en | Table of Contents VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4.9.4 ObjectState 29
4.10 User-defined events 30
4.10.1 Basic syntax 30
4.10.2 Temporal relations 30
4.10.3 Conditions 31
4.10.4 State changes 32
4.10.5 Temporary states 32

VCA Task Script Language Change log | en 5

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

1 Change log

1.1 Version 1.0
Version 1.0 is integrated in firmware 3.0 together with video analytics plugin version 3.0.

1.2 Upgrade to version 1.1
Version 1.1 is integrated in firmware 3.5 together with video analytics plugin version 3.5:
– added definition of ColorHistogram
– added state SimilarToColor for comparison of object histogram and user-defined

histogram
– added states HasObjectSize, HasAspectRatio, HasVelocity, HasDirection, and

HasColor in order to check presence and absence of object properties

1.3 Upgrade to version 1.2
Version 1.2 is integrated in firmware 4.0 together with video analytics plugin version 4.0:
– added definition of FlowDetector
– added state FlowDetected
– added states HasFace and HadFace
– added properties FaceWidth and MaxFaceWidth
– added Field options ObjectSet and SetRelation

1.4 Upgrade to version 1.3
Version 1.3 is integrated in firmware 5.0 together with video analytics plugin version 5.0:
– added definition of CrowdDensityEstimator
– added simple state EstimatedCrowdDensity

1.5 Upgrade to version 1.4
Version 1.4 is integrated in firmware 5.5 together with video analytics plugin version 5.5:
– added definition of Counter

1.6 Upgrade to version 1.5
Version 1.5 is integrated in firmware 5.6 together with video analytics plugin version 5.6:
– added definition of Resolution

1.7 Upgrade to version 1.6
Version 1.6 is integrated in firmware 6.0 together with video analytics plugin version 6.0:
– added definition of MotionDetector
– added states HasClass and HadClass
– marked states HasFace and HadFace as supported only for firmware versions 4.0 to 5.9
– marked properties FaceWidth and MaxFaceWidth as supported only for firmware

versions 4.0 to 5.9

6 en | Change log VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

1.8 Upgrade to version 1.7
Version 1.7 is integrated in firmware 6.3 together with video analytics plugin version 6.3:
– changed naming conventions to emphasize that the task script is not only valid for

Intelligent Video Analytics (IVA)
– extended Field option ObjectSet by FootPoint
– added option TriggerPoint to Line and Route
– extended number of allowed Points for Line
– added property RelativeObjectSize
– added non-Boolean states ObjectsInField and ObjectsInState to definition of

SimpleState

– extended definition of ObjectState
– extended definition of Counter
– marked Boolean states SignalLoss and SignalTooNoisy as no longer supported for

firmware versions 6.0 and higher

1.9 Upgrade to version 1.8
Version 1.8 is integratd in firmware 6.6 together with video analytics plugin version 6.6:
– added temporary states to user-defined events

VCA Task Script Language Definitions | en 7

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

2 Definitions

2.1 Events and states
Whereas states are temporal functions, events occur each time a state changes its value. The
script language provides both, events and states, because of the different operations defined
for them. On the one hand, events allow expressing temporal relations between objects. On
the other hand, non-temporal (e.g. spatial) relations of objects are more easily described by
states.

2.2 Properties
In order to distinguish between Boolean and non-Boolean states, the notion property is
introduced referring to non-Boolean states.

2.3 Rules
When speaking about rules, both events and states are meant which are output by the Alarm
Task engine, i.e. which have been declared external. A rule is said to be active if the
corresponding state is active or the corresponding event has been triggered. In case of an
event, the corresponding rule is active starting with the frame on which the event has been
triggered to the next processed frame where the rule is inactive again.

2.4 Alarm Task engine
The Alarm Task engine parses the output of the VCA (Video Content Analysis) module and
searches within this stream for rules defined according to the VCA Task script language.

8 en | System integration VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

3 System integration

3.1 System overview

Figure 3.1 Device architecture

The figure "Device architecture" shows the parts of the architecture of the encoding device
which are relevant for Video Content Analysis (VCA). First, the video signal is sent to the video
encoder and the VCA software. The former outputs e.g. H.263 or H.264 streams, the latter
produces a meta stream encoded in the Bosch VCD format. Both outputs are received by the
video/VCA dispatcher which forwards them to clients which are interested in the data.
Thereby, a recording task is treated as just another client.
The VCA module detects objects in the scene independently of any user-defined rules. The
extracted objects and their properties are forwarded as a VCD stream to the Alarm Task
engine which does the detection of user-defined rules. The output of the Alarm Task engine
are up to 16 alarm flags. On the one hand, these are merged into the VCD stream. On the
other hand, the VCA Task engine is notified about changes of alarm flags. The VCA Task engine
allows association of any kind of actions to alarm flags; actions like sending e-mail, triggering
a relay output, or notification of a video management system.

Figure 3.2 Video manangement software architecture

The Alarm Task engine is configured with a script specified in the VCA Task script language.
The same language is used in the forensic search applications by Bosch (see figure "Video
management software architecture") to look for unforeseen events in recordings. Applications
include Bosch Video Management Software, Bosch Video Client or Configuration Manager, for
example. There, the recorded VCD streams are fed through another instance of the Alarm Task
engine which can run with another set of rules. The occurrences of events are displayed in a
timeline which allows fast navigation to relevant video sequences. In order to provide
different kinds of forensic search tools, the Alarm Task engine is packed into a plugin which
can be easily exchanged. Version 3.0 of the video analytics plugin was the first one supporting
the VCA Task script language and configuration of the corresponding Alarm Task engine.

VCA Task Script Language System integration | en 9

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

3.2 User-defined tasks
Via the video analytics plugin the Alarm Task engine can be configured. To simplify matters,
the plugin provides a comprehensive list of predefined queries with corresponding wizards.
The wizards automatically enter VCA Task script code into the Alarm Task engine script. Such
code fragments are framed by comments which allow editing of tasks at a later time.
Modification of automatically generated code can lead to corrupt tasks which can no longer
be interpreted by wizards.
The video anlaytics plugin enables the definition of up to 8 tasks corresponding to the first
8 external rules of the script. However, in order to make a user-defined rule visible in this task
list, it must be wrapped as follows:

Thereby, <n> is a placeholder for the ID of the user-defined rule. Furthermore, there must be
no other task with the same ID. The name of the task can be specified within the quotation
marks.
In total, up to 16 external rules can be defined by the user with the VCA Task script, but only
the first 8 (IDs 1 to 8) will be visible in the task list. Nevertheless, the other tasks (IDs 9 to 16)
can be used to trigger alarms and hence can be searched for by their name using the Alarm
Message search, for example.
Note that the ID defines whether the task is displayed in the task list or not. If for example
task 5 is deleted in a script that had tasks 1 to 9 defined, the 5th position will be blank in the
list although in total there are still 8 tasks defined.

//@Task T:0 V:0 I:<n> “user defined task” {

external ObjectState #<n> := true;

//@}

10 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4 Syntax

4.1 Types

4.1.1 Basic types
The VCA Task script language supports BOOLEAN, INTEGER, FLOAT, ANGLE and OID as basic
types. The domains of these types are as follows: BOOLEANs take either the value true or
false, INTEGERs are signed 32-bit integral numbers, FLOATs represent 32-bit floating
numbers, ANGLEs are specified in degrees, and OIDs are unique identifiers of objects.
In order to account for the periodic structure of angles, the special type ANGLE is introduced.
The only operation allowed for angles is a range check. It returns true if there exists an
equivalent angle within the specified range. Two angles are equivalent if their difference is a
multiple of 360 degrees.
There exists a special value NAN (not a number) which indicates that the value does not exist.
The return value is NAN when, for instance, the direction of an object is accessed which does
no longer exist.

Example: speeding
The subsequent VCA Task script example checks for all objects if they are moving faster than
30 meters per second; objects which exceed this limit trigger an alarm:

The Velocity function returns the speed of an object. The within operation takes the
corresponding FLOAT value and compares it with the left bounded interval (30.0,*). The
resulting BOOLEAN is assigned to the ObjectState #1 of the considered object.

4.1.2 Attributes
Events and states can be augmented with attributes. Each attribute is characterized by a basic
type and a unique name. The name is needed in order to distinguish attributes of the same
type and to access the attribute. When introducing events, the following syntax will be used
to describe their attributes:

For states, a similar syntax is used:

The attribute list can be empty in both cases.

external ObjectState #1 := Velocity within(30.0,*);

<event> -> (<type> : <name>, ... , <type> : <name>)

<state>(<type> : <name>, ... , <type> : <name>) -> <type>

VCA Task Script Language Syntax | en 11

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

Example: crossing two lines
The subsequent VCA Task script defines two lines and triggers Event #1 if the same object
passes the first line and afterwards the second line. In order to check whether both
CrossedLine events have been triggered by the same object, the oid attributes of both
events are compared. Without this condition, Event #1 would be triggered even if 1 object
had passed Line #1 before a completely different crossed Line #2. The keywords first and
second allow access to the attribute lists of the two events involved in a before relation.

4.2 Comments
The VCA Task script language supports C-style comments. That means, all characters of a line
following // (two slashes) are ignored by the Alarm Task engine as well as all characters
which are framed by /* (slash and asterisk) and */ (asterisk and slash). The latter kind of
commenting can be used to comment out several lines at once or a part of a single line.

Example

4.3 Script normalization
The VCA Task script language provides a method to normalize coordinates within a specified
range. Place the keyword Resolution at the beginning of the script. The Min coordinate
defines the upper left corner of the image and the Max coordinate defines the lower right
corner. All following coordinates are then defined in relation to Min and Max.

Example

Line #1 := {

Point(10,10) Point(10,50) Direction(0)

};

Line #2 := {

Point(50,10) Point(50,50) Direction(0)

};

external Event #1 := {

CrossedLine #1 before CrossedLine #2

where first.oid == second.oid

};

Field #1 := { // this is a comment

Point(10,10) /*Point(10,50)*/ Point(50,50)

Point(50,10)

};

/* all characters

within this block

are commented out */

Resolution := { Min{0,0} Max{1,1} };

Line #1 := {

Point(0.10,0.10) Point(0.10,0.50)

Point(0.50,0.50) Point(0.50,0.10)

};

12 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4.4 Primitives
The VCA Task script language supports several geometrical primitives. These primitives
observe single objects and trigger events on certain actions. The number of primitives which
can be instantiated is limited by the memory of the device on which the Alarm Task engine is
running. In the firmware, this limits the number of routes to 8, and the total number of
primitives to 32.

4.4.1 Field

Syntax
Field primitives are defined in the following way:

<n> is the number of the field and must be between 1 and 32. The specified points span a
polygon. This polygon must have between 3 and 16 points and must be simple, i.e. it must not
intersect with itself. The coordinates of the points are specified in pixels with the image
resolution processed by the VCA algorithm. <time> specifies the optional DebounceTime in
seconds. Its default value is 0. When the DebounceTime is set, the state of an object, whether
it is inside or outside of the field, only changes if the object stays on the other side for at least
the time specified by <time>. This way, one can get rid of positional errors in the object
tracking or multiple alarms of objects moving along the border of a field.
If a flow detector is used, the DebounceTime has a different meaning. The <time> specifies
the post-alarm time for the field. This ensures that if many short flow alarms are detected
within the debounce time <time> they are merged to a long alarm period.
ObjectSet and SetRelation specify which parts of the object are considered to determine
whether it is regarded as inside or outside. Thereby, <objectset> can be set to either
BaryCenter, FootPoint or BoundingBox with BaryCenter as default value. The
<relation> can be switched between Intersection and Covering with Intersection as
default value. For instance, if BoundingBox and Covering are selected, an object’s bounding
box must be completely inside the specified polygon to be regarded as inside. If <objectset>
is set to BaryCenter, both <relation> options result in the same behavior since the object
set consists of a single point only.

Trigger overview:

Figure 4.1 ObjectSet (BoundingBox) with SetRelation (Covering)

Figure 4.2 ObjectSet (BoundingBox) with SetRelation (Intersection)

Field #<n> := {

Point(<x>,<y>) ... Point(<x>,<y>)

[DebounceTime(<time>)]

[ObjectSet(<objectset>)]

[SetRelation(<relation>)]

};

VCA Task Script Language Syntax | en 13

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

Figure 4.3 ObjectSet (BaryCenter) with SetRelation (Intersection)or (Covering)

Figure 4.4 ObjectSet (FootPoint) with SetRelation (Intersection)or (Covering)

States

The state InsideField #<n> is set if object oid is inside Field #<n>.

ObjectsInField #<n> returns the number of objects which are currently in Field #<n>.

Events

The event EnteredField is triggered when an object enters Field #<n>. The object which
has caused the event can be queried by the argument oid.

The event LeftField is triggered when an object leaves Field #<n>. The object which has
caused the event can be queried by the attribute oid.
Note that an object does not trigger the corresponding EnteredField #<n> event when it is
already within a field at first detection.

Example
The following example triggers an alarm if the same object has first entered the specified field
and later left it again.

InsideField #<n>(OID:oid) -> BOOLEAN

ObjectsInField #<n> -> INTEGER

EnteredField #<n> -> (OID:oid)

LeftField #<n> -> (OID:oid)

Field #1 := {

Point(10,10) Point(10,50)

Point(50,50) Point(50,10)

};

external Event #1 := {

EnteredField #1 before LeftField #1

where first.oid == second.oid

};

14 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4.4.2 Line

Syntax
Line primitives are defined in the following way:

<n> is the number of the line and must be between 1 and 16. A line has at least 2 and at most
16 points whose coordinates are specified in pixels with the image resolution processed by
the VCA algorithm. With the argument <dir>, one can choose whether any object which
passes the line triggers an event or whether only objects which pass from left to right
respectively right to left are relevant. In the first case, <dir> is expected to be 0. In the latter
cases, <dir> takes the value 1 respectively 2. <time> specifies the optional DebounceTime in
seconds. Its default value is 0. When the DebounceTime is set, a CrossedLine #<n> event is
only triggered if the same object will not cross the same line in the opposite direction within
the specified time window <time> afterwards. This way, one can get rid of positional errors in
the object tracking or multiple alarms of objects moving along the line. The TriggerPoint
specifies which point of the object is considered to trigger a line crossing. Possible trigger
points are BaryCenter or FootPoint.

Trigger overview:

Figure 4.5 TriggerPoint (BaryCenter)

Figure 4.6 ObjectSet (FootPoint)

Events

The event CrossedLine #<n> is triggered when an object crosses Line #<n> in the specified
way. The object which has caused the event can be queried by the attribute oid.

Example
See Section Example: crossing two lines, page 11.

Line #<n> := {

Point(<x>,<y>) Point(<x>,<y>)

Direction(<dir>)

[DebounceTime(<time>)]

[TriggerPoint (<triggerpoint>)]

};

CrossedLine #<n> -> (OID:oid)

VCA Task Script Language Syntax | en 15

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

4.4.3 Route

Syntax
Route primitives are defined in the following way:

<n> is the number of the route and must be between 1 and 32. A route has at least two and at
most 8 points. The coordinates of the points are specified in pixels with the image resolution
processed by the VCA algorithm. Each point is followed by a tolerance <r>. With these
tolerances, the path of points is broadened to a stripe. Objects which move along the stripe in
the specified direction trigger the event FollowedRoute #<n>. If <dir> is set to 1, only
object movements are considered which go from the first towards the last point. Is <dir> set
to 2, only object movements are considered which go in the opposite direction. If <dir>
equals 0, any object movement within the stripe is taken into account. Object movements
which do not satisfy the directional constraint are ignored.
The parameters MinPercentage and MaxGap specify the tolerance of the detector. If
Direction is set to 0, the meaning of the two parameters is as follows. The detector
remembers for each object which parts of the stripe have been visited. If more than
MinPercentage of the whole stripe are visited and the largest gap between two visited parts
(including the gaps at the very beginning and the very end of the stripe) is smaller than
MaxGap, then the FollowedRoute #<n> event is triggered. If a direction has been assigned to
the route, object movements within the route are only taken into account if the movement fits
the specified direction and if the distance to the last visited part is not larger than MaxGap.
The TriggerPoint specifies which point of the object needs to follow the route. Possible
trigger points are BaryCenter or FootPoint.

Trigger overview:

Figure 4.7 On the left: TriggerPoint (BaryCenter); on the right: TriggerPoint (FootPoint)

Route #<n> := {

Point(<x>,<y>) Distance(<r>)

...

Point(<x>,<y>) Distance(<r>)

Direction(<dir>)

MinPercentage(<min>)

MaxGap(<max>)

[TriggerPoint (<triggerpoint>)]

};

16 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

Figure 4.8 Illustration of an object following a predefined route

The figure above illustrates an object following a predefined route. The parts of the route
which have been visited by the object are marked in blue. The gaps in between are highlighted
with a red line.

Events

The event FollowedRoute #<n> is triggered when an object has followed the Route #<n>.
The object which has caused the event can be queried by the attribute oid.

Example

4.4.4 Loitering

Syntax
Loitering primitives are defined in the following way:

<n> is the number of the Loitering primitive and must be between 1 and 32. The Loitering
primitive detects objects which stay at one place for <time> seconds. <r> specifies the
spatial tolerance in meters of the loitering detector. For the measurement of object
movements in meters, the camera must have been calibrated beforehand.

FollowedRoute #<n> -> (OID:oid)

Route #1 := {

Point(20,20) Distance(5)

Point(20,50) Distance(5)

Point(50,50) Distance(5)

Direction(0)

MinPercentage(90)

MaxGap(20)

};

external Event #1 := FollowedRoute #1;

Loitering #<n> := {

Radius(<r>)

Time(<time>)

};

VCA Task Script Language Syntax | en 17

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

States

The state IsLoitering #<n> of an object oid is set when the object stays at the same place
for at least the specified time.

Example

4.4.5 ColorHistogram

Syntax
ColorHistogram primitives are defined in the following way:

<n> is the number of the ColorHistogram primitive and must be between 1 and 32. The
ColorHistogram primitive compares object colors with user-defined colors. Up to 5 basic
colors can be selected with the HSV keyword. The default value of the optional parameter
<weight> is 1. The total weight of the basic colors must not exceed 255. Basic colors are
defined in the HSV color space with <h> (a value between 0 and 360) representing the hue
component, <s> (a value between 0 and 100) the saturation, and <v> (a value between 0 and
100) the intensity. The figure "HSV cone" visualizes the 3 components of the HSV color space.

Figure 4.9 HSV cone

<similarity> is a value between 0 and 100 and specifies how similar a color histogram must
be in order to be regarded as a match. The more similar two histograms are the larger is their
<similarity>. The parameter <outlier> allows partial matches between the user-defined

IsLoitering #<n> (OID:oid) -> BOOLEAN

Loitering #1 := {

Radius(5)

Time(10)

};

external ObjectState #1 := IsLoitering #1;

ColorHistogram #<n> := {

HSV(<h>,<s>,<v>[,<weight>])

... HSV(<h>,<s>,<v>[,<weight>])

Similarity(<similarity>)

Outlier(<outlier>)

};

18 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

colors and the object’s color histogram, i.e. the user-defined colors cover only a subset of the
object’s color histogram and the remaining colors should be regarded as outliers. For
instance, when looking for persons wearing a red jacket, about 50% of the object’s colors
should be red and the other 50% are not taken into account.

States

The state SimilarToColor #<n> of an object oid is set when the latest color histogram of
this object is at least as similar to the user-defined color histogram as the specified threshold.

Example
The following color histogram detects objects which contain at least 25% reddish colors and
at least 25% dark colors.

4.4.6 FlowDetector

Syntax
FlowDetector primitives can be defined in one of the following ways:

or

The flow detector operates on the significant flow field computed by the VCA algorithms. Each
detected flow vector has to pass a set of user-defined filters before it triggers an alarm. In the
first definition, up to two directional filters can be defined. If 2 directions are specified, a
motion vector must pass at least 1 for further processing. Each directional filter consists of a
<minangle> and <maxangle> specified in degrees. The coordinate system for angles is
shown in the figure "Image coordinates" in chapter Object properties.

SimilarToColor #<n> (OID:oid) -> BOOLEAN

ColorHistogram #1 := {

HSV(0,100,100)

HSV(0,0,0)

Similarity(90)

Outliers(50)

};

external ObjectState #1 := SimilarToColor #1;

FlowDetector #<n> := {

[Direction(<minangle>,<maxangle>)]

[Direction(<minangle>,<maxangle>)]

[Velocity(<minvelocity>,<maxvelocity>)]

[Activity(<minactivity>,<maxactivity>)]

[Field #<m>]

};

FlowDetector #<n> := {

CounterFlow(<timewindow>,<angletol>)

[Velocity(<minvelocity>,<maxvelocity>)]

[Activity(<minactivity>,<maxactivity>)]

[Field #<m>]

};

VCA Task Script Language Syntax | en 19

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

In the second definition, the direction is automatically determined based on a main flow
analysis. The last <timewindow> seconds are considered in order to compute the main flow
direction. As soon as a dominant direction is detected, this direction defines the main flow
and activates the flow detector. If there is no dominant direction within the last
<timewindow> seconds, the flow detector is inactive. A motion vector going in the opposite
direction to the main flow with an angular tolerance of at most <angletol> degrees passes
the directional filter of the second definition. If a spatial constraint is specified, only motion
vectors within Field #<m> are taken into account when estimating the main flow direction.
The other filters do not apply to the main flow estimation.
Additional filters for the velocity, activity, and space can be set up. Thereby, the
<minvelocity> and <maxvelocity> are specified in pixels per second. If a Field #<m> is
added to the definition, motion vectors outside the Field #<m> are ignored during
processing. If no field is added, all motion vectors are considered. The activity measures the
number of active motion vectors, i.e. the number of motion vectors which have passed all
filters. Thereby, the activity is 0 if no motion vector is active. The maximum activity of 100 is
reached when the complete specified field is filled with active motion vectors. With
<minactivity> and <maxactivity> the user can define an activation interval within which
the flow detector triggers an alarm. Thereby, the lower bound <minactivity> is excluded
from the interval. This implies that the flow detector will only trigger an alarm if there is any
motion.
If a Field #<m> is present in the definition of a flow detector, the flow detector inherits the
DebounceTime of the specified field. Thereby, the meaning of the DebounceTime is that the
flow field must pass all the constraints for at least DebounceTime many seconds before the
flow detector will trigger an alarm.

States

The state DetectedFlow #<n> is set when there is a significant flow fulfilling all the
constraints defined in the corresponding FlowDetector #<n> definition.

Example
The following example triggers an alarm if a significant motion from right to left has been
detected within the specified rectangle.

DetectedFlow #<n> -> BOOLEAN

Field #1 := {

Point(10,10) Point(10,50)

Point(50,50) Point(50,10)

};

FlowDetector #1 := {

Direction(-45,45)

Field #1

};

external SimpleState #1 := DetectedFlow #1;

20 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4.4.7 CrowdDensityEstimator

Syntax
CrowdDensityEstimator primitives are defined in the following way:

The crowd level estimation detector uses the reference image which should show the empty
scene to detect the crowd in front of the background reference. This scene is limited by the
CrowdDensityField which must be specified in advance. The VCA algorithm calculates a
crowd level activity value for the given region which goes from zero to 100%. The trigger
activity level can be limited by setting the activation interval <minactivity> and
<maxactivity>. The crowd activity level is calculated every second. To ignore a short-term
crowd level jump, the DebounceTime or SmoothingTime filter can be set. If DebounceTime is
used, an alarm is triggered if the crowd level is within the activity thresholds for more than the
time specified. With SmoothingTime, <seconds> defines a sliding window: an alarm is
triggered if the average over the time specified is within the activity thresholds.

States

The state EstimatedCrowdDensity #<n> is set when there is a significant crowd level
fulfilling the constraints defined in the corresponding CrowdDensityEstimator #<n>
definition.

Example
The following example triggers an alarm if the crowd level is greater or equal to 25% for more
than 10 seconds within the crowd field that has to be specified and saved to the device
before the query or the recording is done.

CrowdDensityEstimator #<n> := {

[Activity(<minactivity>,<maxactivity>)]

CrowdDensityField #n

[DebounceTime(<seconds>)|SmoothingTime(<seconds>)]

};

EstimatedCrowdDensity #<n> -> BOOLEAN

CrowdDensityEstimator #1 := {

Activity(25,100)

CrowdDensityField #1

DebounceTime(10)

};

external SimpleState #1 := EstimatedCrowdDensity #1;

VCA Task Script Language Syntax | en 21

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

4.4.8 MotionDetector

Syntax
MotionDetector primitives are defined in the following way:

The motion detector triggers an alarm if the provided motion cells fulfill the defined
criteria.The MotionDetector can operate on the whole screen or on the specified Field. The
trigger activity level can be limited by setting the activation interval <minactivity> and
<maxactivity>. The Activity is specified in percent of the selected area. Furthermore, the
trigger activity level can by limited by the Size of the cell cluster. This interval
(<minsize>,<maxsize>) is specified in percent of the whole screen.

States

The state DetectedMotion #<n> is set when there is a significant motion level fulfilling the
constraints defined in the corresponding MotionDetector #<n> definition.

Example
The following example triggers an alarm if the size of the cell cluster is greater or equal to
0.5% of the whole screen.

MotionDetector #<n> := {

[Activity(<minactivity>,<maxactivity>)]

[Size(<minsize>,<maxsize>)]

[Field #n]

};

DetectedMotion #<n> -> BOOLEAN

MotionDetector #1 := {

Size(0.5,100)

};

external SimpleState #1 := DetectedMotion #1;

22 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4.5 Object-specific events
The main task of the VCA algorithm is object detection and object tracking. Besides the
position and other properties of the currently detected objects, the algorithm notifies about
basic object events. When the algorithm detects a new object, an Appeared event is
triggered. Correspondingly, a Disappeared event is sent as soon as an object gets lost.
Idled and Removed are special cases of disappearing objects with the following meaning. If
an object does not move at all for a certain time, an Idled event is triggered. This happens if
a person leaves an object like a bag. Similarly, an object can be picked up by a person
triggering a Removed event.

4.5.1 Object events
Object events are triggered by appeared or disappeared objects.

Events

4.6 Counter
Syntax
A counter is defined in one of the following ways:

or

or

or

or

Appeared (OID:oid)

Disappeared (OID:oid)

Idled (OID:oid)

Removed (OID:oid)

Counter #<n> := {

Event #<m>

};

Counter #<n> := {

Counter #<x> + Counter #<y>

};

Counter #<n> := {

Counter #<x> - Counter #<y>

};

Counter #<n> := {

<num-expr>

};

external Counter #<n> := {

...

};

VCA Task Script Language Syntax | en 23

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

The counter can either count the number of triggered events or a counter can be assigned the
sum or difference of two counters or a non-Boolean state. Moreover, the keyword external
indicates that the counter value is added to the VCD stream as well as included in the RCP
counter message. Hence, without this keyword the counters are only used internally and the
current value cannot be displayed. Up to 32 counters can be configured. The default range of
each counter is between 0 and the maximum of a 32-bit value.
The following optional arguments can be set: Each counter can be named via
Text(“<string>”) in which the string is a 32-byte UTF-8 encoded string. The counter allows
two different kinds of modes – Mode(KeepMax) or Mode(Wraparound). If KeepMax mode is
set, the counter stops at the upper bound. In Wraparound mode the counter restarts from the
lower bound (e.g. 0). The minimum and maximum bound can be set with the argument
within(<min>,<max>) in which <min> corresponds to the lower bound and <max> to the
upper bound. The position of the counter value displayed in the video can be defined by the
keyword TopLeft(<x>,<y>) which indicates the position within the frame. The origin is in
the upper left corner.
Generally, a counter does not trigger an alarm. In order to do so, the counter needs to be
assigned to a state as shown below:

Therefore, an alarm is triggered as soon as the counter value is within the boundary defined
by <min> and <max>.

Example

4.7 Object properties
Each tracked object has a set of properties. These properties include the object’s position, its
direction of movement, its speed, its size, and its bounding box. Whereas the position is only
indirectly accessible via geometrical primitives, the other properties are directly available in
conditional expressions via the subsequent functions. All the following functions return NAN if
either the object does not have this property or if the object does not exist at all. For each
property there exists a below mentioned state which returns true if the property is present
and false otherwise. For all subsequent functions and states, the oid is optional if the
attribute list of the current scope contains the argument OID:oid.

Functions

This function returns the current direction in degrees of object oid. If no direction is available
for this object, the result is NAN. Directions are expressed in image coordinates. Thereby, a
movement from the right image border to the left border corresponds to zero degrees, from
the top border to the bottom border to 90 degrees, from the left border to the right border to

external SimpleState #<n> := Counter #<n> within(<min>,<max>)

ObjectState #32 := true;

Event #2 := OnSet ObjectState #32;

external Counter #5 := {

Event #2 Text("Every 5th:")

TopLeft(4,14) within(0,5) Mode(Wraparound)

};

external SimpleState #2 := Counter #5 within(5,*);

Direction (OID:oid) -> ANGLE

24 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

180 degrees, and from the bottom border to the top border to 270 degrees (see figure "Image
coordinates").

Figure 4.10 Image coordinates

This function returns the current velocity in meters per second of object oid. The speed is
estimated using the object’s translation in object coordinates and camera calibration
parameters. If no velocity is available for this object, the result is NAN.

This function returns the current aspect ratio of object oid. It is defined as the ratio of height
and width of the object’s bounding box. If no bounding box is available for this object, the
result is NAN. A square has an aspect ratio of 1. An object which is two times higher than wide,
has an aspect ratio of 2 (see figure "Current aspect ratio").

Figure 4.11 Current aspect ratio

This function returns the current size in square meters of object oid. The size is estimated
based on the shape of the object and camera calibration parameters. If no size is available for
this object, the result is NAN.

This function returns the current size relative to the screen size (from 0.000 to 1.000) of
object oid. The size is calculated based on the shape of the object.

The following functions are only supported for firmware versions 4.0 to 5.9:

This function returns the current width of a detected head in pixels assigned to object oid. If
no face has been detected for this object, the result is NAN.

This function returns the maximum width over all so far detected heads assigned to object
oid. If there was no detection for this object so far, the result is NAN.

Velocity (OID:oid) -> FLOAT

AspectRatio (OID:oid) -> FLOAT

ObjectSize (OID:oid) -> FLOAT

RelativeObjectSize (OID:oid) -> FLOAT

FaceWidth (OID:oid) -> FLOAT

MaxFaceWidth (OID:oid) -> FLOAT

VCA Task Script Language Syntax | en 25

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

4.7.1 States

returns true if the direction of the object with object ID is available for the current frame. If
the object is not present in the current frame, the return value is false.

returns true if the velocity of the object with object ID is available for the current frame. If the
object is not present in the current frame, the return value is false.

returns true if a bounding box of the object with object ID is available for the current frame.
If the object is not present in the current frame, the return value is false.

returns true if a bounding box of the object with object ID is available for the current frame.
If the object is not present in the current frame, the return value is false.

returns true if a color histogram of the object with object ID is available since the last
appearance of the object. If the object is not present in the current frame, the return value is
false.

returns true if an object matching one of the specified classes is detected in the current
frame. If no such object is present in the current frame, the return value is false.

returns true if an object matching one of the specified classes has been detected since the
last appearance of the object. If no such object is present in the current frame, the return
value is false.
For the last two states, classes are defined entering the required <classnames> from the
following list separated by empty space:
– Person (moving upright persons)
– Bike (moving bycicles)
– Car (moving cars)
– Truck (moving trucks/big cars)
– NoClass (non of the above classes)

The following functions are only supported for firmware versions 4.0 to 5.9:

returns true if a head is detected on the object with object ID in the current frame. If the
object is not present in the current frame, the return value is false.

HasDirection (OID:oid) -> BOOLEAN

HasVelocity (OID:oid) -> BOOLEAN

HasAspectRatio (OID:oid) -> BOOLEAN

HasObjectSize (OID:oid) -> BOOLEAN

HasColor (OID:oid) -> BOOLEAN

HasClass (<classnames>) -> BOOLEAN

HadClass (<classnames>) -> BOOLEAN

HasFace (OID:oid) -> BOOLEAN

26 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

returns true if a head has been detected on the object with object ID since the last
appearance of the object. If the object is not present in the current frame, the return value is
false.

4.8 Tamper states
The VCA algorithms can detect tampering of cameras. The output of the tamper detection is
available via the following Boolean states:

If the video signal becomes too dark, such that automatic object detection becomes
impossible, the SignalTooDark state is enabled. This can happen if the camera is covered by
a sheet, such that almost black images are recorded.

If the video signal becomes too bright, such that automatic object detection becomes
impossible, the SignalTooBright state is enabled. This can happen if the camera is dazzled
by a strong light source.

If most of the image content has changed, the GlobalChange state is enabled. This can
happen if the camera is moved or if an object comes too close to the camera.

If a reference image has been set during the configuration of the VCA algorithm and the
reference checking of the VCA algorithm has been enabled, the algorithm detects
manipulations of the camera by comparing the current video signal with the preset reference
image. Significant differences between the two images are recorded in the VCD stream. This
information can be accessed from the VCA Task script language via the
RefImageCheckFailed state.

The following two Boolean states are no longer supported for firmware versions 6.3 and
higher:

If the video signal of an encoder device is lost, the SignalLoss state is set.

If the video signal becomes too noisy, such that automatic object detection becomes
impossible, the SignalTooNoisy state is enabled. This can happen if an analog video signal is
transmitted over a large distance or if the sensitivity of the camera sensor is not sufficient in
night vision applications.

HadFace (OID:oid) -> BOOLEAN

SignalTooDark -> BOOLEAN

SignalTooBright -> BOOLEAN

GlobalChange -> BOOLEAN

RefImageCheckFailed -> BOOLEAN

SignalLoss -> BOOLEAN

SignalTooNoisy -> BOOLEAN

VCA Task Script Language Syntax | en 27

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

Example
For firmware 6.3, the following VCA Task script triggers an alarm on any detected tamper
action.

Note that in this example it is important to work with a user-defined SimpleState instead of
an ObjectState, since the latter is only evaluated for detected objects. However, when the
camera is tampered there are usually no detections.

4.9 User-defined states
User-defined states are always Boolean states, i.e. these states take either the value true or
false. A user-defined state has either no attributes or the object ID as an attribute. The
former state is called SimpleState, whereas the latter is called ObjectState. In the
subsequent sections their syntax and usage is explained in more detail.

4.9.1 SimpleState
A SimpleState is defined in the following way:

Thereby, <condition> is a placeholder for a Boolean expression. The user can specify up to
32 states (from 1 to 32) via the number <n>, but only the first 16 states (<n> from 1 to 16) can
be external. The same SimpleState cannot be defined twice. The attribute list of a
SimpleState is always empty. Therefore, one cannot access object specific properties in the
condition clause of a SimpleState.
The following table summarizes the predefined states which can be used instead of the
<condition> placeholder besides a previously defined SimpleState:

The following predefined states are not supported for firmware versions 6.3 and higher:

4.9.2 Boolean composition of conditions
Several conditions can be composed. The syntax of conjunctions is as follows:

Similarly, disjunctions are written as:

external SimpleState #1 :=

SignalTooDark or SignalTooBright or

GlobalChange or RefImageCheckFailed;

[external] SimpleState #<n> := <condition>;

SignalTooDark

SignalTooBright

GlobalChange

RefImageCheckFailed

SignalLoss Note: only for encoder devices

SignalTooNoisy

<condition> := <condition> and <condition>

<condition> := <condition> && <condition>

<condition> := <condition> or <condition>

<condition> := <condition> || <condition>

28 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

The negation of conditions is:

Ambiguities in the evaluation of expressions are resolved by priorities. Negations have the
highest priority, followed by conjunctions, and disjunctions last. Furthermore, the priority can
be controlled by embracing sub-expressions with brackets:

4.9.3 Properties in conditions
Properties and non-Boolean states can be used as condition in the following way:

The within keyword checks if the specified <num-expr> is within the specified interval. The
interval bounds, <min> and <max>, are constant values. If 1 of the 2 bounds is replaced by an
asterisk *, the corresponding bound is ignored. A <num-expr> can either be an attribute, a
constant value, a non-Boolean state or a property. In combination with the within keyword,
<num-expr> must be either of type INTEGER, FLOAT, or ANGLE.
Besides the within relation, a simple equation is allowed for any non-Boolean type as long as
both operands are of the same type:

ObjectsOnScreen, ObjectsInField, and ObjectsInState are non-Boolean states which
can be used in the definition of a SimpleState #<n>. It returns the number of objects which
are currently detected by the VCA algorithm on the screen respectively in a field, or which
trigger an object state.
Note that the conditions described in this section return false if the value of 1 <num-expr>
is NAN.

Example
The following VCA Task script triggers an alarm if at least two objects are detected by the VCA
algorithm.

The subsequent example triggers an event if two different objects cross the same line.
Thereby, the second object must cross the line within 10 seconds after the first.

<condition> := not <condition>

<condition> := !<condition>

<condition> := (<condition>)

<condition> := <num-expr> within(<min>,<max>)

<condition> := <num-expr> == <num-expr>

<condition> := <num-expr> != <num-expr>

external SimpleState #1 := ObjectsOnScreen within(2,*);

Line #1 := {

Point(10,10) Point(50,50)

Direction(0)

};

external Event #1 := {

CrossedLine #1 before(0,10) CrossedLine #1

where first.oid != second.oid

};

VCA Task Script Language Syntax | en 29

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

4.9.4 ObjectState
An ObjectState is defined in the following way:

Thereby, <condition> is a placeholder for a Boolean expression. The user can specify up to
32 states (from 1 to 32) via the number <n>, but only the first 16 states (<n> from 1 to 16)
can be external. The same ObjectState cannot be defined twice.
In contrast to a SimpleState which is instantiated only once, an ObjectState is instantiated
for each object visible in the processed frame. In order to distinguish all the instances, the
object ID is associated with each instance as an attribute. Hence, an ObjectState’s attribute
list is:

In the <condition> clause, this object ID can be used to access object properties or an
earlier defined ObjectState of the same object in addition to the ones which are allowed
within the <condition> clause of a SimpleState. The following list enumerates Boolean
states which require an object ID as attribute and which can therefore be used as condition of
ObjectState:

The following object properties and non-Boolean states are also available within the definition
of ObjectState:

Example
The following VCA Task script detects objects which are speeding within a specified field.

[external] ObjectState #<n> := <condition>;

ObjectState #<n>(OID:oid) -> BOOLEAN

InsideField #<n> where n is the number of a Field primitive

IsLoitering #<n> where n is the number of a Loitering primitive

ObjectsInState #<n> where n is the number of an object state

ObjectsInField #<n> where n is the number of a Field primitive

ObjectsOnScreen

Direction

Velocity

AspectRatio

ObjectSize

RelativeObjectSize

Field #1 := {…};

external ObjectState #1 :=

Velocity within(30,*) and InsideField #1;

30 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

4.10 User-defined events
In the previous sections, several events have been introduced which are automatically
generated together with the corresponding primitives. The user can define new events by
using temporal relations between events. Besides temporal relations, additional conditions
can be formulated in order to constrain events further. With these conditions, the user has
access to event attributes and can formulate constraints for them. In the subsequent
sections, the different possibilities are described in more detail.

4.10.1 Basic syntax
User events are defined in the following way:

Thereby, <event> is a placeholder for any predefined event (like EnteredField as
introduced in the previous sections or a user-defined event) or more complex event
expressions as described in the upcoming subsections. The user can specify up to 32 events
(from 1 to 32) via the number <n>, but only the first 16 events (<n> from 1 to 16) can be
external. The same user event cannot be defined twice. Event #<n> inherits the attribute
list from <event>, i.e. it provides the same list of attributes as <event>.
When the Alarm Task engine detects an external user-defined event, the corresponding alarm
flag is set for exactly 1 processed frame. If the same alarm flag is used by several external
rules (e.g. external ObjectState or external SimpleState), the alarm flag is set if any of the
rules is active.
The following table summarizes the predefined events which can be used as <event>
placeholder:

4.10.2 Temporal relations
The most interesting operations on events are temporal relations. The before keyword
combines two events in the following way. If the second event is triggered and the first event
has been triggered before, another event with the same attributes as the second one is
triggered. In its simplest form the syntax is as follows:

The curly brackets are mandatory to avoid ambiguous associations of nested constructions.
With the following extension, a time interval can be specified which limits the chronology of
the two events further.

In this formulation, the first event is only a candidate for the second event if it has occurred at
least <from> seconds and at most <to> seconds before the second event. Replacing <to> by
the * (asterisk) symbol, an infinite time interval can be defined starting with <from>.

[external] Event #<n> := <event>;

FollowedRoute #<n> where n is the number of a Route primitive

CrossedLine #<n> where n is the number of a Line primitive

EnteredField #<n> where n is the number of a Field primitive

LeftField #<n> where n is the number of a Field primitive

Appeared

Disappeared

Idled

Removed

<event> := { <event> before <event> }

<event> := { <event> before(<from>,<to>) <event> }

VCA Task Script Language Syntax | en 31

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

Adding the not keyword, it is even possible to check whether the first event has not occurred
before the second event in the specified time interval (the time interval is again optional):

The or keyword can be used to trigger an event if either event A or event B has happened. The
attribute list of both events must be the same:

In this case curly brackets can be omitted.

Example
Event #1 marks objects which cross 1 of 2 lines. Event #2 detects a pair of objects where
1 object passed the first Line #1 and 1 object passed the second Line #2 after at most 5
seconds. Event #3 is triggered by objects which pass Line #2 while Line #1 was not
crossed for 5 seconds.

4.10.3 Conditions
Often it is necessary to constrain events by their attributes or by properties of involved
objects. In the VCA Task script language, this is supported via the where clause.

The Alarm Task engine will only trigger if the <condition> is satisfied at the time when the
<event> occurred. Which states and properties can be used in the <condition> clause
depends on the attribute list of <event>. In principle, events with an empty attribute list can
have a <condition> clause similar to the one of SimpleState. If the attribute list contains
OID:oid as attribute, the <condition> clause is similar to the one of ObjectState.
With the concepts introduced so far it is possible to detect whether the same object has
passed first 1 line and afterwards another line. The VCA Task script language solves this task
with a combination of before and where keywords.

In the <condition> clause following the where keyword it is possible to access attributes of
both events involved in the before relation. An attribute <x> of the event to the left can be
accessed via first.<x> whereas attributes of the event to the right are available via
second.<x>. If an attribute <x> belongs exclusively to 1 of the 2 events, the specification of
first and second is optional. If an attribute <x> belongs to both events, the attribute is
associated to the second event, which is the more recent one. Any of the other before
variants described in subsection "Temporal relations" can be similarly combined with a
<condition> clause.

<event> := { <event> not before(<from>,<to>) <event> }

<event> := <event> or <event>

Line #1 := {…};

Line #2 := {…};

external Event #1 := CrossedLine #1 or CrossedLine #2;

external Event #2 := {

CrossedLine #1 before(0,5) CrossedLine #2

};

external Event #3 := {

CrossedLine #1 not before(0,5) CrossedLine #2

};

<event> := { <event> where <condition> }

<event> := { <event> before <event> where <condition> }

32 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

Example
With these extensions, objects can be found which cross two lines in a row at a certain speed,
as shown by Event #1.

4.10.4 State changes
In order to detect e.g. changes of an object’s appearance, the keywords OnChange, OnSet,
and OnClear are introduced. They can be combined with any user-defined state and trigger an
event if the state changes its value, if the state becomes true, or if the state becomes false.
The syntax is as follows:

Thereby, <state> is either a previously defined ObjectState #<n> or SimpleState #<n>.
The attribute list of the <state> is passed to the corresponding change event. For instance,
the attribute list of an OnChange SimpleState #<n> event is empty, whereas the attribute
list of an OnSet ObjectState #<n> has OID:oid as its only attribute.

Example
The following VCA Task script detects objects which are changing their shape from tall and
thin to flat and wide.

ObjectState #1 is true if the object is taller than wide. ObjectState #2 is true if the
object is wider than tall. For objects which are almost square, both states are false. The task
is to look for objects whose ObjectState #1 was set some time ago and whose
ObjectState #2 is set now. Hence, it is sufficient to wait for OnSet ObjectState #2 and
check if OnClear ObjectState #1 has happened before.

4.10.5 Temporary states
In order to have an event triggering a temporary state, the keyword within is introduced. It is

added after an event to delay an alarm, to extend an alarm state, or to temporarily combine
with other states. The syntax is as follows:

Line #1 := {…};

Line #2 := {…};

external Event #1 := {

CrossedLine #1 before(0,5) CrossedLine #2

where first.oid == second.oid and

Velocity(second.oid) within(30,*)

};

<event> := OnChange <state>

<event> := OnSet <state>

<event> := OnClear <state>

ObjectState #1 := AspectRatio within(1.2,*);

ObjectState #2 := AspectRatio within(*,0.8);

external Event #1 := {

OnClear ObjectState #1 before OnSet ObjectState #2

where first.oid == second.oid

};

<state> := <event> within(min,max)

VCA Task Script Language Syntax | en 33

Bosch Security Systems Script Language DOC | 1.8 | 2019.02

Thereby, <event> is either a previously defined Event #<n> or an arbitraty predefined event
like EnteringField, Appeared, or CrossingLine. The attribute list of the <state> is
passed to the corresponding change event. For instance, the attribute list of an OnChange
SimpleState #<n> event is empty, whereas the attribute list of an OnSet ObjectState
#<n> has OID:oid as its only attribute.

Example
The following VCA Task script triggers an alarm once an object appears. The alarm lasts for
30 seconds , even if the object disappears in the meantime.

The next line delays the triggering of the alarm for 10 seconds after the object appeared. If
the object disappears in the meantime, no alarm is triggered.

An ObjectState is used here, because an object state depends on the object and is false if
the object is gone. A SimpleState is staying true until the algorithm is reset, for example

due to reconfiguration.

The next example is more complex. It shows how to combine the temporary state with other
states. First a Counter #3 is defined that counts objects in an arbitrary object state. If no
objects are in this state, the SimpleState #31 is true. The resulting state external
SimpleState #3 is the SimpleState #31 delayed on activation by 5 seconds.

external SimpleState #1 := Appeared within(0,30);

external ObjectState #2 := Appeared within(10,*);

ObjectState #32 :=...;

Counter #3 := { ObjectsInState #32 };

SimpleState #31 := Counter #3 within (0,0);

external SimpleState #3 := SimpleState #31 and !(OnChange SimpleState

#31 within(0,5));

34 en | Syntax VCA Task Script Language

DOC | 1.8 | 2019.02 Script Language Bosch Security Systems

Bosch Security Systems B.V.
Torenallee 49
5617 BA Eindhoven
Netherlands
www.boschsecurity.com
© Bosch Security Systems B.V., 2019

